67 research outputs found

    MEMS-Based Endomicroscopes for High Resolution in vivo Imaging

    Full text link
    Intravital microscopy is an emerging methodology for performing real time imaging in live animals. This technology is playing a greater role in the study of cellular and molecular biology because in vitro systems cannot adequately recapitulate the microenvironment of living tissues and systems. Conventional intravital microscopes use large, bulky objectives that require wide surgical exposure to image internal organs and result in terminal experiments. If these instruments can be reduced sufficiently in size, biological phenomena can be observed in a longitudinal fashion without animal sacrifice. The epithelium is a thin layer of tissue in hollow organs, and is the origin of many types of human diseases. In vivo assessment of biomarkers expressed in the epithelium in animal models can provide valuable information of disease development and drug efficacy. The overall goal of this work is to develop miniature imaging instruments capable of visualizing the epithelium in live animals with subcellular resolution. The dissertation is divided into four projects, where each contains an imaging system developed for small animal imaging. These systems are all designed using laser beam scanning technology with tiny mirrors developed with microelectromechanical systems (MEMS) technology. By using these miniature scanners, we are able to develop endomicroscopes small enough for hollow organs in small animals. The performance of these systems has been demonstrated by imaging either excised tissue or colon of live mice. The final version of the instrument can collect horizontal/oblique plane images in the mouse colon in real time (>10 frames/sec) with sub-micron resolution (<1 um), deep tissue penetration (~200 um) and large field of view (700 x 500 um). A novel side-viewing architecture with distal MEMS scanning was developed to create clear and stable image in the mouse colon. With the use of the instrument, it is convenient to pinpoint location of interest and create a map of the colon using image mosaicking. Multispectral fluorescence images can by collected at excitation wavelength ranging from 445 nm to 780 nm. The instruments have been used to 1) validate specific binding of a cancer targeting agent in the mouse colon and 2) study the tumor development in a mouse model with endogenous fluorescence protein expression. We use these studies to show that we have developed an enabling technology which will allow biologist to perform longitudinal imaging in animal models with subcellular resolution.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/136954/2/dxy_1.pd

    Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride

    Get PDF
    Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCl4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for α-smooth muscle actin (α-SMA) and collagen I were decreased. While α-SMA, collagen α1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-β were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of α-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate downregulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro

    Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes.

    Get PDF
    Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467 nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration

    Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride

    Get PDF
    Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCI4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for a-smooth muscle actin (alpha-SMA) and collagen I were decreased. While alpha-SMA, collagen alpha 1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-beta were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of alpha-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate down-regulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro

    An Electrostatic MEMS Translational Scanner with Large Out-of-Plane Stroke for Remote Axial-Scanning in Multi-Photon Microscopy

    No full text
    We present an electrostatic microelectromechanical systems (MEMS) resonant scanner with large out-of-plane translational stroke for fast axial-scanning in a multi-photon microscope system for real-time vertical cross-sectional imaging. The scanner has a compact footprint with dimensions of 2.1 mm × 2.1 mm × 0.44 mm, and employs a novel lever-based compliant mechanism to enable large vertical displacements of a reflective mirror with slight tilt angles. Test results show that by using parametrical resonance, the scanner can provide a fast out-of-plane translational motion with ≥400 μm displacement and ≤0.14° tilt angle over a wide frequency range of ~390 Hz at ambient pressure. By employing this MEMS translational scanner and a biaxial MEMS mirror for lateral scanning, vertical cross-sectional imaging with a beam axial-scanning range of 200 μm and a frame rate of ~5–10 Hz is enabled in a remote scan multi-photon fluorescence imaging system

    Machine Learning-Assisted Detection for BPSK-modulated Ambient Backscatter Communication Systems

    No full text
    Ambient backscatter communication (AmBC), a green communication technology, is hampered by the continuously and extremely fast varying, strong and unknown ambient radio frequency (RF) signals. This paper presents a machine learning-assisted method for extracting the information of the AmBC device. The information is modulated on top of the unknown Gaussian-distributed ambient RF signals. The proposed approach can decode the binary phase shift keying backscatter signals encoded using Hadamard codes. This method extracts the learnable features for the tag signal by first eliminating the direct path signal and then correlating the residual signal with the coarse estimate of ambient signal. Thereafter, the tag signals are recovered by using the k-nearest neighbors classification algorithm. The recovered signals are decoded by a Hadamard decoder to retrieve the original information bits. We validate the performance using simulations to corroborate the proposed approach.Peer reviewe

    HIV-Specific Reported Outcome Measures: Systematic Review of Psychometric Properties

    No full text
    BackgroundThe management of people living with HIV and AIDS is multidimensional and complex. Using patient-reported outcome measures (PROMs) has been increasingly recognized to be the key factor for providing patient-centered health care to meet the lifelong needs of people living with HIV and AIDS from diagnosis to death. However, there is currently no consensus on a PROM recommended for health care providers and researchers to assess health outcomes in people living with HIV and AIDS. ObjectiveThe purpose of this systematic review was to summarize and categorize the available validated HIV-specific PROMs in adults living with HIV and AIDS and to assess these PROMs using the Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) methodology. MethodsThis systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A literature search of 3 recommended databases (PubMed, Embase, and PsychINFO) was conducted on January 15, 2021. Studies were included if they assessed any psychometric property of HIV-specific PROMs in adults living with HIV and AIDS and met the eligibility criteria. The PROMs were assessed for 9 psychometric properties, evaluated in each included study following the COSMIN methodology by assessing the following: the methodological quality assessed using the COSMIN risk of bias checklist; overall rating of results; level of evidence assessed using the modified Grading of Recommendations, Assessment, Development, and Evaluation approach; and level of recommendation. ResultsA total of 88 PROMs classified into 8 categories, assessing the psychometric properties of PROMs for adults living with HIV and AIDS, were identified in 152 studies including 79,213 people living with HIV and AIDS. The psychometric properties of most included PROMs were rated with insufficient evidence. The PROMs that received class A recommendation were the Poz Quality of Life, HIV Symptom Index or Symptoms Distress Module of the Adult AIDS Clinical Trial Group, and People Living with HIV Resilience Scale. In addition, because of a lack of evidence, recommendations regarding use could not be made for most of the remaining assessed PROMs (received class B recommendation). ConclusionsThis systematic review recommends 3 PROMs to assess health outcomes in adults living with HIV and AIDS. However, all these PROMs have some shortcomings. In addition, most of the included PROMs do not have sufficient evidence for assessing their psychometric properties and require a more comprehensive validation of the psychometric properties in the future to provide more scientific evidence. Thus, our findings may provide a reference for the selection of high-quality HIV-specific PROMs by health care providers and researchers for clinical practice and research
    • …
    corecore